圖1:豆科植物共生固氮中的碳-氮營(yíng)養(yǎng)交換及根瘤中的侵染與非侵染細(xì)胞 該研究首先通過(guò)顯微操作獲得了百脈根成熟根瘤中的兩種細(xì)胞組分:紅棕色的侵染細(xì)胞和透明的非侵染細(xì)胞(每種類型的細(xì)胞分離50~100個(gè));通過(guò)微量RNA提取、Smart-Seq2建庫(kù)和測(cè)序,最終鑒定到939個(gè)差異表達(dá)基因,其中有925個(gè)基因?yàn)楸狙芯恐行妈b定發(fā)現(xiàn),包括55個(gè)轉(zhuǎn)錄因子和73個(gè)轉(zhuǎn)運(yùn)蛋白(圖2)。已報(bào)道的共生固氮相關(guān)的基因如豆血紅蛋白基因(LjLbs)和硫酸鹽轉(zhuǎn)運(yùn)蛋白基因(LjSST1)在侵染細(xì)胞中高水平表達(dá);相反,氨轉(zhuǎn)運(yùn)蛋白(LjAMT1.1)和ERF轉(zhuǎn)錄因子(LjERF1)僅在非侵染細(xì)胞中表達(dá)。該研究發(fā)現(xiàn)六個(gè)蔗糖合成酶基因中的兩個(gè)基因和七個(gè)轉(zhuǎn)化酶基因中的一個(gè)基因在非侵染細(xì)胞中表達(dá)水平較高,這些結(jié)果支持蔗糖被運(yùn)輸?shù)椒乔秩炯?xì)胞并分解為二羧酸鹽的模型。谷氨酰胺合成酶(GS)和天冬酰胺合成酶(AS)是氨同化為谷氨酰胺和天冬酰胺的兩種關(guān)鍵酶,該研究發(fā)現(xiàn)編碼GS的五個(gè)基因中的兩個(gè)基因在根瘤的侵染細(xì)胞和非侵染細(xì)胞中均高度表達(dá);氨轉(zhuǎn)運(yùn)蛋白(LjAMT1.1)在非侵染細(xì)胞中特異表達(dá),表明非侵染細(xì)胞可能有助于氨的同化。此外,六個(gè) AS 基因中的兩個(gè)在非侵染細(xì)胞中的表達(dá)顯著高于侵染細(xì)胞,表明谷氨酰胺可能在侵染細(xì)胞和非侵染細(xì)胞中都有效合成。
圖2:?jiǎn)渭?xì)胞分離及差異表達(dá)基因鑒定 根瘤中豆血紅蛋白通過(guò)其輔因子血紅素與氧氣結(jié)合與解離,從而實(shí)現(xiàn)根瘤中微氧環(huán)境的精細(xì)調(diào)控。血紅素在質(zhì)體中通過(guò)四吡咯途徑合成,其中谷氨酰-tRNA還原酶(GluTR)催化血紅素生物合成的限速步驟。百脈根基因組編碼三個(gè)GluTR基因,轉(zhuǎn)錄組結(jié)果表明LjGluTR2只在侵染細(xì)胞中表達(dá)。啟動(dòng)子-GUS融合分析發(fā)現(xiàn)侵染細(xì)胞中LjGluTR2的表達(dá)顯著增強(qiáng)。FLU蛋白 (Fluorescence in blue light) 通過(guò)抑制GluTR活性負(fù)反饋調(diào)節(jié)四吡咯途徑,利用在侵染細(xì)胞中表達(dá)的LjLb2啟動(dòng)子過(guò)表達(dá)FLU基因,與對(duì)照植物相比過(guò)表達(dá)FLU的植物莖鮮重減少,紅色根瘤減少,且形成了更多白色根瘤,根瘤中的血紅素水平下降。這些結(jié)果表明,血紅素生物合成的翻譯后調(diào)控對(duì)成熟根瘤的高效固氮至關(guān)重要(圖3)。
圖3:根瘤中血紅素合成途徑及FLU的翻譯后調(diào)控機(jī)制 綜上,該研究系統(tǒng)鑒定了在固氮根瘤中侵染細(xì)胞和非侵染細(xì)胞中的差異表達(dá)基因。這些基因大部分為本研究首次鑒定發(fā)現(xiàn),為進(jìn)一步深入研究根瘤內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)、轉(zhuǎn)錄調(diào)控、代謝通路和代謝物在根瘤中的轉(zhuǎn)運(yùn)來(lái)實(shí)現(xiàn)對(duì)共生固氮的協(xié)同調(diào)控的分子機(jī)制奠定了基礎(chǔ)。 博士后王龍龍和博士研究生周宇并列為本文的第一作者,華中農(nóng)業(yè)大學(xué)生命科學(xué)技術(shù)學(xué)院、農(nóng)業(yè)微生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室端木德強(qiáng)教授為通訊作者。本研究得到了國(guó)家自然科學(xué)基金、中國(guó)博士后科學(xué)基金、中央高校基本科研專項(xiàng)資金以及生科院博士后百川計(jì)劃的支持。 【英文摘要】 Symbiotic nitrogen fixation (SNF) is an efficient and environmentally friendly biological nitrogen-fixing system. The mechanism of SNF has been extensively studied in root nodules. Over the past two decades, most studies focused on the early stages of root nodule symbiosis. However, little is known about mechanisms in maintaining an efficient SNF in mature nodules. In this study, we separated two main types of cells in mature nodules, known as infected cells (ICs) and uninfected cells (UCs)。 Using Smart-Seq2 single-cell RNA sequencing approach, hundreds of genes were found to be significantly differentially expressed between ICs and UCs. Notably, most of them were uncharacterized previously, including many transcription factors and putative transporters. Specific isoforms of genes encoding key enzymes involved in sucrose metabolism and ammonia assimilation were identified. Our results confirm that asparagine, one of the nodule exported nitrogen componds, is mainly synthesized in UCs. In contrast, glutamine might be actively synthesized in both ICs and UCs. Leghemoglobins are the most abundant proteins in nodules and heme is an essential prosthetic group of Lbs. Our study identified distinctive expression patterns of three glutamyl-tRNA reductase (GluTR) genes encoding the key enzyme catalyzing the rate-limiting step of heme synthesis. We additionally overexpressed the GluTR feedback inhibitor protein, FLU (Fluorescence in blue light) in ICs, and observed a dramatically reduced heme content and a SNF deficiency phenotype, indicating that posttranslational regulation of heme biosynthesis is essential for nodule functioning. Our study therefore provides a valuable resource for investigating specific genetic components responsible for the complex cellular processes between ICs and UCs in mature nodules. It also lays the foundation for improving the SNF efficiency in legumes in the future and even ultimately being engineered into non-legume crops. 原文鏈接: https://onlinelibrary.wiley.com/doi/10.1111/pbi.13778